Part of a disCERNing crowd

  Last updated June 5, 2020 at 5:30 pm


Australian physicist Martin White reveals what life is like working on the world’s most exciting science experiment – CERN’s Large Hadron Collider.

large hadron collider_CERN_lhc map

CERN’s Large Hadron Collider skirts not only a major city in Geneva, but crosses the border between France and Switzerland. Credit: Atlas Experiment/CERN

Why This Matters: Living in Australia doesn’t exclude you from being part of science history.

It’s lunchtime, and I am standing with a colleague under the main site of the CERN laboratory, trying to work out whether to go right or left. With the rainy Geneva winter in full swing, he informs me that he’s found a hidden entrance to a network of tunnels under the foyer of CERN’s main building, and has worked out how to get to the fabled Restaurant 2 without getting wet.

All we have to do is follow his secret route through the tunnels, which it transpires is so secret that he himself has forgotten it. After half an hour squeezing past hanging cables and scary radiation warnings, we emerge starving exactly where we started out.

This is life at CERN in a nutshell – an endless search for the unknown conducted in a spirit of frivolity by permanently hungry practitioners.

Established in 1954, the European Organisation for Nuclear Research (CERN) hosts the largest particle accelerator ever built by humankind, named, rather appropriately, the Large Hadron Collider (LHC).

Also: CERN measures anti-matter with all new precision

It also has an ambitious and wide-ranging program of other experiments, which test various aspects of particle and nuclear physics, and develop practical spin-off applications of the cutting-edge technology required to push our understanding of the universe to deeper and deeper levels.

Having lived there on and off for many years, the question I get asked more than any other is: “What does a person at CERN actually do all day?”

The lure of understanding the universe

I never had a typical day at CERN, since my work brought me into contact with computer scientists, civil and electrical engineers, medical physicists, theoretical physicists, accelerator experts, and detector physicists. The only common thread was attendance at a large number of meetings which, when located at opposite ends of the main site, led to frantic daily runs of a few kilometres that contributed to a significant weight loss – until I discovered the CERN cake selection.

Danger signs are a routine sight. Credit: Dean Mouhtaropoulous/Getty Images

The preferred language is English, but it’s not easy to recognise it as such, due to a heavy reliance on jargon and acronyms. Moreover, I met physicists who could answer me in English, before translating for an Italian colleague, and mocking my question in German to a bystander. Nevertheless, I am always surprised at how quickly the exotic becomes normalised at CERN, whether that means getting acclimatised to constantly being surrounded by extraordinarily smart people, or becoming used to dinner party statements like “I have a terrible day tomorrow – I have to reassemble the positron accumulator!”

Deeper: Weird Science: Weasel vs Science

My work at CERN has involved the ATLAS experiment, one of the seven experiments of the LHC whose job is to filter and record the results of proton-proton collisions that occur more than one billion times a second.

The middle of this detector is effectively a giant digital camera, consisting of 6.3 million strips of silicon, and my first job at CERN was to write the software that monitored each of these strips individually to confirm that the system was operating smoothly.

CERN LHC ATLAS experiment detecteor

White’s guide to the ATLAS experiment that’s transforming our understanding of the birth of the universe. Credit: ATLAS EXPERIMENT / CERN

I am one of CERN’s 12,000 users, and like most of them I have worked for various universities and research institutes scattered around the world, with frequent travel to the CERN laboratory as an external participant.

The intense lure of CERN is that it remains the best international facility for discovering the new particles and laws of nature that would explain both how the Universe works on its smallest scales, and how it operated 0.0000000001 seconds after the Big Bang.

The Standard Model of particle physics that I learnt as an undergraduate, and now pass on to my students, remains incapable of explaining most of the matter in the Universe, and it is widely believed that the LHC will finally shift us to a higher plane of understanding.

This is an excerpt of an article which appears in Issue 85 of Cosmos Magazine. To subscribe to Australia’s premier science magazine, delivered direct to your door or inbox, click here.

More Like This

The grandfather paradox

Can scientists break quantum physics?

About the Author

Martin White
Associate Professor Martin White is a particle astrophysicist at the University of Adelaide, Australia. As a member of the ATLAS experiment, he searches for supersymmetric particles and new Higgs-like particles.

Published By

Cosmos is a quarterly science magazine. We aim to inspire curiosity in ‘The Science of Everything’ and make the world of science accessible to everyone.

At Cosmos, we deliver the latest in science with beautiful pictures, clear explanations of the latest discoveries and breakthroughs and great writing.

Winner of 47 awards for high-quality journalism and design, Cosmos is a print magazine, online digital edition updated daily, a daily and weekly e-Newsletter and educational resource with custom, curriculum-mapped lessons for years 7 to 10.

Featured Videos

Fitting natural water treatment processes back into the landscape
Protecting the Great Barrier Reef at the National Sea Simulator