Faint stellar glow reveals the location of dark matter in galaxy clusters

Proudly supported by

  Last updated April 1, 2019 at 11:54 am

Topics:  

The light of lone stars helps astronomers trace the distribution of dark matter in massive galaxy clusters.


Hubble image galaxy cluster

Researchers have shown how intracluster light — the light of lonely stars — can reveal the distribution of invisible dark matter in massive galaxy clusters. Image: NASA/STScI/J. DePasquale


UNSW scientists have found a way for astronomers to map elusive dark matter – by using the light of lonely stars that drift freely in clusters of galaxies.


The faint glow of the stars accurately traces the distribution of dark matter and can help to explore the nature of this mysterious element in the universe – and it allows astronomers to run the analysis in more clusters, compared to current techniques.


The work was published in the Monthly Notices of the Royal Astronomical Society.


Dark matter is considered one of the main ingredients of the universe and it plays a crucial role in holding stars together in a galaxy. If you imagine a bowl holding balls, the bowl is dark matter, and the balls are stars.


But detecting dark matter is extremely difficult, because it emits no light and we can only observe how its presence affects the stars via gravity. However, dark matter makes most of the mass in clusters of galaxies.


“Seeing” dark matter


Lead author, astrophysicist Dr Mireia Montes from UNSW Science’s School of Physics, found a way to “see” dark matter. She focused her attention on the faint glow that exists in galaxy clusters, called intracluster light.


Intracluster light is made up of stars that do not belong to any galaxy, singled out because they move very differently compared to the stars in galaxies. Instead these stars ‘float’ freely within the cluster. As you travel away from the center of a galaxy towards its outskirts, it is increasingly dominated by dark matter and this is where you find the intracluster light.


Dr Montes’ study is the first to confirm the potential of intracluster light in mapping dark matter with current imaging data. Previous studies have examined the reach of intracluster light in galaxy clusters, but Dr Monte’s study shows intracluster light can indicate the distribution of dark matter.


“This intracluster light traces the distribution of mass very well, highlighting the dark matter of a galaxy cluster,” says Dr Montes.


“This means that we have a luminous tracer of this dark matter and how it distributes in clusters of galaxies.”


Amazing Hubble images provide the breakthrough


For the study, Dr Montes used publicly available deep imaging data from the Hubble Frontier Fields Initiative, an ambitious plan to test the limits of the Hubble Space Telescope by pointing it towards deep space to take images of galaxy clusters a billion light years from Earth. Galaxy clusters are several hundred galaxies drawn together by gravity.


The result of this initiative is some of the most amazing images of the universe. The six galaxy clusters are among the most distant objects photographed by the Hubble Space Telescope.


Hubble image of dark matter distribution

Using images from the Hubble Space Telescope, UNSW astronomers found intracluster light (green) can trace the distribution of dark matter (purple). Credit: Mireia Montes & Ignacio Trujillo


Until now, dark matter analysis has been achieved through study of a phenomena called gravitational lensing. The cluster of galaxies acts like a lens, bending light from more distant objects. On the images it appears as an arc or ring of light.


By studying this stretching of light, it is possible to map dark matter in a galaxy cluster. However, this analytical process is hard to measure and observing the intracluster light is easier.


The team mapped the distribution of the intracluster light and compared it with the distribution of mass in the cluster.


With this new method, exploring the distribution of dark matter in galaxy clusters in detail can be done with just deep imaging observations, bypassing gravitational lensing. It won’t replace gravitational lensing, but it can be an additional valuable technique to help refine existing mass maps. The team will study more clusters to see if the match between dark matter and intracluster light holds up.


“It can help the gravitational lensing community upgrade their mass maps. And consequently, it will help understand the nature of dark matter,” says Dr Montes.


The second author of the article, Dr Ignacio Trujillo from the Instituto de Astrofísica de Canarias, agrees: “This result is very inspiring. We can now see how the dark matter is distributed and compare such distribution with the results of the cosmological simulations done in supercomputers.”


Dr Montes is a member of the Women in Maths & Science Champions Program, an initiative launched by UNSW Science to support female research students and early-career scientists in becoming science communicators and lifelong advocates for women in maths and science.


Front image courtesy of NASA


Related


Project to make ground-based telescopes ‘three times sharper than Hubble’


Ben McAllister – The ORGAN Experiment: Shining a light on dark matter


Astronomy is great in any sign language




About the Author

Ivy Shih
Ivy Shih is a science writer at the University of New South Wales.

Published By

Featured Videos

Placeholder
Big Questions: Cancer
Placeholder
A future of nanobots in 180 seconds
Placeholder
Multi-user VR opens new worlds for medical research
Placeholder
Precision atom qubits achieve major quantum computing milestone
Placeholder
World's first complete design of a silicon quantum computer chip
Placeholder
Micro-factories - turning the world's waste burden into economic opportunities
Placeholder
Flip-flop qubits: a whole new quantum computing architecture
Placeholder
Ancient Babylonian tablet - world's first trig table
Placeholder
Life on Earth - and Mars?
Placeholder
“Desirable defects: Nano-scale structures of piezoelectrics” – Patrick Tung
Placeholder
Keeping Your Phone Safe from Hackers
Placeholder
Thru Fuze - a revolution in chronic back pain treatment (2015)
Placeholder
Breakthrough for stem cell therapies (2016)
Placeholder
The fortune contained in your mobile phone
Placeholder
Underwater With Emma Johnston
Placeholder
Flip-flop qubits: a whole new quantum computing architecture
Placeholder
The “Dressed Qubit” - breakthrough in quantum state stability (2016)
Placeholder
Pinpointing qubits in a silicon quantum computer (2016)
Placeholder
How to build a quantum computer in silicon (2015)
Placeholder
Quantum computer coding in silicon now possible (2015)
Placeholder
Crucial hurdle overcome for quantum computing (2015)
Placeholder
New world record for silicon quantum computing (2014)
Placeholder
Quantum data at the atom's heart (2013)
Placeholder
Towards a quantum internet (2013)
Placeholder
Single-atom transistor (2012)
Placeholder
Down to the Wire (2012)
Placeholder
Landmark in quantum computing (2012)
Placeholder
1. How Quantum Computers Will Change Our World
Placeholder
Quantum Computing Concepts – What will a quantum computer do?
Placeholder
Quantum Computing Concepts – Quantum Hardware
Placeholder
Quantum Computing Concepts – Quantum Algorithms
Placeholder
Quantum Computing Concepts – Quantum Logic
Placeholder
Quantum Computing Concepts – Entanglement
Placeholder
Quantum Computing Concepts - Quantum Measurement
Placeholder
Quantum Computing Concepts – Spin
Placeholder
Quantum Computing Concepts - Quantum Bits
Placeholder
Quantum Computing Concepts - Binary Logic
Placeholder
Rose Amal - Sustainable fuels from the Sun
Placeholder
Veena Sahajwalla - The E-Waste Alchemist
Placeholder
Katharina Gaus - Extreme Close-up on Immunity
Placeholder
In her element - Professor Emma Johnston
Placeholder
Martina Stenzel - Targeting Tumours with Tiny Assassins
Placeholder
How Did We Get Here? - Why are we all athletes?
Placeholder
How Did We Get Here? - Megafauna murder mystery
Placeholder
How Did We Get Here? - Why are we so hairy?
Placeholder
How Did We Get Here? - Why grannies matter
Placeholder
How Did We Get Here? - Why do only humans experience puberty?
Placeholder
How Did We Get Here? - Evolution of the backside
Placeholder
How Did We Get Here? - Why we use symbols
Placeholder
How Did We Get Here? - Evolutionary MasterChefs
Placeholder
How Did We Get Here? - The Paleo Diet fad
Placeholder
How Did We Get Here? - Are races real?
Placeholder
How Did We Get Here? - Are We Still Evolving?
Placeholder
How Did We Get Here? - Dangly Bits
Placeholder
Catastrophic Science: Climate Migrants
Placeholder
Catastrophic Science: De-Extinction
Placeholder
Catastrophic Science: Nuclear Disasters
Placeholder
Catastrophic Science: Storm Surges
Placeholder
Catastrophic Science: How the Japan tsunami changed science
Placeholder
Catastrophic Science: How the World Trade Centre collapsed
Placeholder
Catastrophic Science: Bushfires