Zettabytes, Satellites and Industry 4.0 – How Australia can win in the new space frontier

Proudly supported by

  Last updated May 20, 2019 at 11:12 am

Topics:  

The Australian space industry is in a prime position to take advantage of the new space frontier, Space 2.0. Astronomer Alan Duffy explains how.


Australian space industry


Today’s second and third year university students, if they were born in the late 1990s, will very possibly live across three centuries. They will be 101-year-old elders in a dawning 22nd Century.


What will industry look like to them in the year 2100? And how can Australia gain the full benefit from their contributions to global knowledge?


These are things we think about and plan for. But we won’t have to wait 80 plus years to see such radical transformation of our industries – cycles of technological advances are measured now in months rather than decades.


The information tsunami now gripping humanity is bringing to life new sectors on a scale we have never seen before.  The latest is the new wave of industrial activity around space exploration and utilisation.


Close to 50 nations currently have large government space budgets, nine of them over $1 billion.


For Australia and the world this is Space 2.0.


In the first iteration of the space age, Australia engaged only at a government level. Remember the movie The Dish? Back in the ‘60s there was little or no connection with industry. Our involvement thrived for a short time, ultimately settling into a defence and government effort with the United States.


Australia’s chances of success are much greater this time round.


Links with industry


This year is set to be a standout year for Space 2.0 in Australia, propelled by the establishment of the Australian Space Agency, with its key focus on supporting the growth of Australia’s space industry.


CSIRO and Boeing recently signed a $35 million agreement on space-related activities. The two partners just last week marked 30 years together with a capital injection into space tech research.


A series of milestones will be met this year including potentially a private satellite launch provider established in Australia by the end of the year.


A virtuous circle


All this is happening concurrently with – and integral to – advances in Industry 4.0.  What we mean by this is that the needs of Industry 4.0 – for example, high performing global bandwidth at low cost – are being met by step changes in space technologies and vice versa.


Industry 4.0 provides the rapid prototyping and in situ reprogramming or reassignment of satellites. Satellites meanwhile enable remote asset management, and the tracking and relaying of information from embedded sensors.  It is a virtuous circle.


The open-standards and off-the-shelf components facilitated by Industry 4.0 permit mini economies of scale in Space 2.0.  This contrasts to the bespoke precision engineering of Space 1.0 where single customers (i.e. defence departments) were risk averse and highly tailored. Now fail fast is the mantra.


Data, data, data


At the source of both revolutions are leaps in computing and data science – the outcome, if you like, of Silicon Valley going into orbit.


One of the key Australian space research institutes is OzGrav, the Australian Research Council’s Centre of Excellence for Gravitational Wave Discovery. Based at Swinburne University, it is part of a 1500-strong team around the world which counts recent Nobel Laureates amongst its members.


Their observation last year of the death spiral of two neutron stars heralded a new dawn in our interstellar understanding. This discovery of gravitational waves would not have occurred but for major developments in data science.


OzGrav houses one of the most powerful computers in the world – a supercomputer called OzSTAR at the forefront of supercomputing with a focus on hybrid CPU-GPU technology and data science. OzSTAR provides OzGrav the opportunity to process and analyse information like few other research groups, giving them a unique ability to unlock the secrets of the universe.


But beyond OzGrav, there is a myriad of other brand new Australian space opportunities.


Space is expanding in Australia


A newly established network of Industry 4.0 Testlabs will speed up collaboration and co-creation between educational institutions and industry in Australia.


The world’s first Industry 4.0 Testlab will be established to focus on carbon composite manufacturing. Such lightweight materials are key to future assets in space where lower launch mass means vastly cheaper cost to orbit.


There is also research in virtually all Industry 4.0 advanced technologies including Industrial Automation, Internet of Things, Big Data, Smart Sensors, Autonomous Systems and Artificial Intelligence. Critically the latter technique has been developed to operate in the low-power demands of space ushering in a new era of Smart Satellites.


Additional to the soon-to-be established Testlab, the Swinburne Centre for Micro-Photonics is pioneering super powerful next-generation photonic chips.


The internet has been – and always will be – driven by photonics, from data centres to intercontinental undersea fibre-optic links. Key photonic inventions gave birth to the internet and will continue to underpin its future.


One of the biggest challenges globally is how we meet the bandwidth and major energy demands that big data requires.


Global internet traffic, growing exponentially, recently broke through the Zettabyte (ZB) per year (10 to the power of 21 bytes, or a billion Terabytes) barrier and is expected to triple, reaching 3.3 ZB per year by 2021.


Data and communications now account for about 10 per cent of total global energy consumption, with dramatic increases expected as developing countries come online, further increasing global carbon emissions. Data centres generate so much heat that Google, Facebook and others have been building them in northern Scandinavia since 2013.


Researchers, like those at the Centre for Micro-Photonics, are producing photonic chips with the performance, efficiency, reliability, level of integration, and cost needed to help solve some of the biggest issues the world will ever know.


Australia is also reaching beyond our own borders, with the CSIRO establishing a centre in California’s Silicon Valley.


Partnered with private companies such as Boeing and GE, and research organisations like NASA and Swinburne University, the office represents, promotes and discovers opportunities for Australian research across North America, expanding our influence in Space 2.0 and Industry 4.0.


Startups not superpowers


Space 2.0 is underpinned by revolutionary new technologies that mean rockets and satellites can be built by startups not just superpowers.


From 3D printing of rocket engines, to microelectronics that spawn tiny cubesats – each 10 cm sided cube as capable as a car-sized satellite of old – we are witnessing breakthroughs by orders of magnitude.


In the past, the space age was about firing rockets and humans into space.  The current revolution is about harnessing information from space to help humans on Earth. It promises unique insights to improve conditions on our planet and to drive growth in the commercial world.


In agriculture, satellite images assess crop yields and smart tags monitor livestock. The CSIRO’s Ceres tag is giving farmers constant updates on livestock movements and habits, allowing them to respond quickly to injured or ill cattle and sheep in remote locations. Combined with a feedback loop to the animal, next generation sensors will herd cattle away from SatNav defined virtual fences that farmers can outline on smartphones. No more costly barbed wire or herders to be seen.


Two of the most exciting new Australian SMEs, Myriota and Fleet, are already commercially successful in the space and satellite sector, enabling precision agriculture, supporting advanced techniques in mining, and in providing solutions for emergency response and supply chain and infrastructure monitoring.


We have learned a lot over the past half a century. Technological disruptions are creating evermore commercial opportunities in space; costs are coming down, private ownership in the market is going up, and we are seeing a growing confidence that the benefits – this time – will accrue to Australian industry and across the economy.


This piece was co-authored with Professor Aleksandar Subic, Deputy Vice-Chancellor (Research and Development) at Swinburne University of Technology.


Related


Satellite mission control set for launch


Australia’s Future in Space


What the Australian space agency must do




About the Author

Alan Duffy
Associate Professor Alan Duffy is an astronomer and physicist at Swinburne University of Technology, Melbourne. He's also lead scientist for Australia's Science Channel. You can find him on Twitter @astroduff.

Published By

Featured Videos

Placeholder
Apple co-founder, Steve Wozniak, chats to Swinburne’s Professor Bronwyn Fox
Placeholder
Massive dead galaxy found in the early universe
Placeholder
Quasar Absorption
Placeholder
Associate Professor Alan Duffy discusses his career and the mystery of dark matter
Placeholder
Colliding Black Holes
Placeholder
The Science of Science Fiction with Associate Professor Alan Duffy
Placeholder
Alan Duffy Says Thank You Cassini