Very early Earth had continents that have disappeared completely

  Last updated July 12, 2019 at 10:34 am


A new model of Earth’s ancient rocks suggests that there may have been continents as far back as 4 billion years, which have now disappeared without a trace.

Earth crust continents

Credit: FrankRamspott

Scientists have found that the Earth’s continental crust may have been thicker, much earlier than current models suggest, with continents possibly present as far back as four billion years.

Derrick Hasterok and Matthew Gard from the University of Adelaide, compiled 75,800 geochemical samples from igneous rocks (such as granite) with estimated ages of formation from around the continents.

They estimated radioactivity in these rocks today and constructed a model of average radioactivity from four billion years ago to the present.

“All rocks contain natural radioactivity that produces heat and raises temperatures in the crust when it decays – the more radioactive a rock the more heat it produces,” says Hasterok.

“Rocks typically associated with the continental crust have higher radioactivity than oceanic rocks. A rock four billion years old would have about four times as much radioactivity when it was created compared with today.”

Study finds unexpected deficit

But the researchers found an unexpected deficit in the level of radioactivity in rocks older than about two billion years. When they corrected for higher heat production, because of the higher radioactivity that would have been present, the deficit disappeared.

“We think there would have been more granite-like – or continental-type – rocks around but because of the higher radioactivity, and therefore higher heat, they either melted or were easily destroyed by tectonic movement. That’s why these continental crusts don’t show in the geological record.

“Our prevailing models suggest that continents eventually grew out of the oceans as the crust thickened. But we think there may have been significant amount of, albeit very unstable, continental crust much earlier.”

Models for the distribution of crustal thickness in early Earth. Credit: University of Adelaide.

Survival of Earth’s early crust wasn’t random chance

Hasterok says that the survival of the Earth’s early crust wasn’t random chance.

“We use this model to understand the evolving processes from early Earth to the present, and suggest that the survival of the early crust was dependent on the amount of radioactivity in the rocks – not random chance.”

“If our model proves to be correct, it may require revision to many aspects of our understanding of the Earth’s chemical and physical evolution, including the rate of growth of the continents and possibly even the onset of plate tectonics,” he says.

New model could assist in monitoring global warming

Co-author Martin Hand, also from the University of Adelaide, says the new model could have important implications for monitoring the effects of global warming.

“What this new model allows us to do is help predict rock radioactivity in places where we have few or no samples, like Antarctica, where we cannot access samples, which could be very important in assessing the stability of ice sheets and the threshold of temperature changes needed for global warming to impact glacial melting,” says Hand.

The researchers say the new radioactivity model also may help in the search for hot rocks with geothermal potential and can be used to produce more accurate models of oil maturation in sedimentary basins.

The studies are published in the journals Precambrian Research and Lithos.


The chocolate chip cookie dough theory of Earth’s mantle

Oldest rocks in the Pilbara pre-date plate tectonics

558-milion-year-old fossil is oldest animal on Earth

About the Author

University of Adelaide Newsroom
The latest and best news from The University of Adelaide.

Published By

Featured Videos

Edible insects - food for the future?
Cookstoves for the developing world
Drones for conservation
From booze to biofuel
Aboriginal Heritage Project
Medicine student saves his brother's life
Naming new mammals with Professor Kris Helgen
Using Drones for Conservation