Mars rover’s methods for finding signs of life given Flinders Ranges test

Proudly supported by

  Last updated May 7, 2020 at 8:04 am

Topics:  

Perseverance will soon head to Mars looking for life – now scientists have tested the same methods to look for evidence of the earliest forms of life on Earth.


Perseverance Mars 2020 rover

An artist’s impression of NASA’s Perseverance rover drilling rock samples on Mars. Credit: NASA/JPL-Caltech




Why This Matters: What we learn on other planets can help us understand our own.




A UNSW astrobiologist has put the technology of NASA’s soon-to-be-launched Perseverance Rover to the test to find out how it will fare detecting signs of life on Mars.


And in a paper published in respected journal Astrobiology recently, UNSW Sydney’s Bonnie Teece says the technology hits the mark.


Teece, along with scientists from Macquarie University and University of Missouri, replicated the methods that the Perseverance Rover will use to select Martian rocks for analysis for biomarkers – naturally occurring molecules indicating evidence for microbial life. The team examined samples collected from the Flinders Ranges in South Australia.


“The Flinders Ranges is a perfect site to do a lot of Mars-related research in, because it’s a dry, dusty, and windy area that is very barren and so a really good analogue for looking for life on Mars,” says Teece. “We wanted to use the same techniques that are on the Rover to pinpoint the best areas for looking for life and show that these techniques work together well.”




Also: From outback to outer space – Pilbara rocks hold clues to finding life on Mars




Teece says that when looking for signs of life on Mars, or in the case of her study, for ancient life on Earth, it is very important that scientist use multiple lines of evidence.


“If you just simply have one line of evidence, it may not actually be real – it may be an artefact of contamination or it might look like life, but isn’t.


“This is why it is so important the Rover has a diverse payload of instruments that can investigate and probe sediments in different ways on Mars to look for the best candidates for life.”


Perseverance’s techniques for finding organic molecules


The Perseverance Rover, a semi-autonomous vehicle that will be exploring the Jezero Crater on Mars, is equipped with high-tech instruments to help identify rocks on the Red Planet. It has a camera, named MASTCAM-Z, equipped with eagle eyes to identify far-off rock samples of the Martian landscape that may be good contenders for signs of ancient life. It is also outfitted with PIXL, an instrument that uses x-ray lithochemistry to reveal elemental composition of samples viewable with the naked eye. And rounding out the analysis tools is SHERLOC, whose main objective is to detect organic compounds and biosignatures by scanning the environment using spectroscopy.




By mimicking the technology available on Perseverance, the team was able to pinpoint which samples had undergone the most degradation and which would be less likely to still preserve these organics. The team used analogous tools to identify the rocks in the Flinders terrain that may be good for analysis, which they then collected by hand.




Teach This: Education resource – Mars rover’s methods for finding signs of life given Flinders Ranges test




While conditions at the Flinders on Earth and the Jezero Crater on Mars are quite different – partly because of the absence of an atmosphere on Mars – the techniques proved successful, even despite problems unique to the hotter conditions on our planet.


“Significantly, we were able to tell how hot these rocks had become over their geological history,” says Teece.


“When sediments are buried and lithified to become rocks, they are heated up because the interior of Earth is hot – for approximately every kilometre under the surface that we descend, the temperature heats up by 25oC. This heat also destroys organic compounds, so knowing the maximum temperature of the rock is essential when canvassing for organics.”


Signs of life


By simply looking at the samples, in conjunction with elemental mapping and some organic results, the team was able to put together a comprehensive description of the environments that the fossils were in.


“Overall, we were able to gather a reasonable level of detail about the samples, and were able to effectively determine which fossils were most likely to contain fossilised organic compounds, showing that the combined use of these techniques is effective in looking for evidence of organics.”




Also: Terraforming Mars no plan(et) B




Using the same technology onboard Perseverance led to positive results in the search for ancient microbial life on Earth, which Teece says bodes well for the Mars mission.


“What is interesting is that we did find signs of ancient microbial life from the Cambrian period – which is when animals first evolved on earth. We found biomarkers, we found organic compounds and we found physical fossils and minerals that are associated with biology on Earth.


“The key is by using multiple lines of enquiry. If physical fossils have been obliterated by some kind of geological process, like sandblasting – a huge issue on Mars – then you need to find other ways to look for signs of life.


“This is one of the reasons we also look for complementary information like the chemical composition of the rocks,” says Teece.


“This means we’re getting a fuller, more robust picture of this point in geological time. And that’s what the rover will be getting on Mars because it will be using these different tools.”


NASA has designated a window to launch the Perseverance Rover from July 17 to August 5, 2020.


More Like This


Opportunity’s 5,000 sols on Mars


Huge lake of water found under the surface of Mars




About the Author

UNSW Newsroom
The latest and best news from the University of New South Wales.

Published By

Featured Videos

Placeholder
Big Questions: Cancer
Placeholder
A future of nanobots in 180 seconds
Placeholder
Multi-user VR opens new worlds for medical research
Placeholder
Precision atom qubits achieve major quantum computing milestone
Placeholder
World's first complete design of a silicon quantum computer chip
Placeholder
Micro-factories - turning the world's waste burden into economic opportunities
Placeholder
Flip-flop qubits: a whole new quantum computing architecture
Placeholder
Ancient Babylonian tablet - world's first trig table
Placeholder
Life on Earth - and Mars?
Placeholder
“Desirable defects: Nano-scale structures of piezoelectrics” – Patrick Tung
Placeholder
Keeping Your Phone Safe from Hackers
Placeholder
Thru Fuze - a revolution in chronic back pain treatment (2015)
Placeholder
Breakthrough for stem cell therapies (2016)
Placeholder
The fortune contained in your mobile phone
Placeholder
Underwater With Emma Johnston
Placeholder
Flip-flop qubits: a whole new quantum computing architecture
Placeholder
The “Dressed Qubit” - breakthrough in quantum state stability (2016)
Placeholder
Pinpointing qubits in a silicon quantum computer (2016)
Placeholder
How to build a quantum computer in silicon (2015)
Placeholder
Quantum computer coding in silicon now possible (2015)
Placeholder
Crucial hurdle overcome for quantum computing (2015)
Placeholder
New world record for silicon quantum computing (2014)
Placeholder
Quantum data at the atom's heart (2013)
Placeholder
Towards a quantum internet (2013)
Placeholder
Single-atom transistor (2012)
Placeholder
Down to the Wire (2012)
Placeholder
Landmark in quantum computing (2012)
Placeholder
1. How Quantum Computers Will Change Our World
Placeholder
Quantum Computing Concepts – What will a quantum computer do?
Placeholder
Quantum Computing Concepts – Quantum Hardware
Placeholder
Quantum Computing Concepts – Quantum Algorithms
Placeholder
Quantum Computing Concepts – Quantum Logic
Placeholder
Quantum Computing Concepts – Entanglement
Placeholder
Quantum Computing Concepts - Quantum Measurement
Placeholder
Quantum Computing Concepts – Spin
Placeholder
Quantum Computing Concepts - Quantum Bits
Placeholder
Quantum Computing Concepts - Binary Logic
Placeholder
Rose Amal - Sustainable fuels from the Sun
Placeholder
Veena Sahajwalla - The E-Waste Alchemist
Placeholder
Katharina Gaus - Extreme Close-up on Immunity
Placeholder
In her element - Professor Emma Johnston
Placeholder
Martina Stenzel - Targeting Tumours with Tiny Assassins
Placeholder
How Did We Get Here? - Why are we all athletes?
Placeholder
How Did We Get Here? - Megafauna murder mystery
Placeholder
How Did We Get Here? - Why are we so hairy?
Placeholder
How Did We Get Here? - Why grannies matter
Placeholder
How Did We Get Here? - Why do only humans experience puberty?
Placeholder
How Did We Get Here? - Evolution of the backside
Placeholder
How Did We Get Here? - Why we use symbols
Placeholder
How Did We Get Here? - Evolutionary MasterChefs
Placeholder
How Did We Get Here? - The Paleo Diet fad
Placeholder
How Did We Get Here? - Are races real?
Placeholder
How Did We Get Here? - Are We Still Evolving?
Placeholder
How Did We Get Here? - Dangly Bits
Placeholder
Catastrophic Science: Climate Migrants
Placeholder
Catastrophic Science: De-Extinction
Placeholder
Catastrophic Science: Nuclear Disasters
Placeholder
Catastrophic Science: Storm Surges
Placeholder
Catastrophic Science: How the Japan tsunami changed science
Placeholder
Catastrophic Science: How the World Trade Centre collapsed
Placeholder
Catastrophic Science: Bushfires