Magnetic nanosprings could clean up microplastic pollution

  Last updated August 2, 2019 at 3:01 pm

Topics:  

Plastic pollution remains a huge environmental issue. Now, researchers have developed a new approach that breaks down microplastics without impacting the marine ecosystem.


microplastics_plastic pollution_ocean pollution

Plastic pollution is a huge environmental issue, impacting animal health, human health and marine ecosystems.


A team of Australian and Chinese researchers have developed carbon nanosprings that show promise in breaking down microplastics polluting oceans and rivers without harming nearby microorganisms.


The tiny springs are also designed to become magnetic once they’ve been used, so they can be recollected and used again.


The development is described in a paper in the journal Matter.


Microplastics are ubiquitous pollutants


Although often invisible to the naked eye, microplastics are ubiquitous pollutants. Some, such as the exfoliating beads found in popular cosmetics, are simply too small to be filtered out during industrial water treatment. Others are produced indirectly, when larger debris like soda bottles or tires weather amid sun and sand.


The plastic waste finds its way into oceans and rivers poses a global environmental threat with damaging health consequences for animals, humans, and ecosystems.


To develop a new approach to tackle the problem, researchers from the University of Adelaide joined forces with colleagues from Curtin University and Edith Cowan University in Perth, and Guangdong University of Technology in China.


Removing microplastics with chemical chain reactions


The team generated short-lived chemicals, called reactive oxygen species, which trigger chain reactions that chop the various long molecules that make up microplastics into tiny and harmless segments that dissolve in water.


The problem is, however, that reactive oxygen species are often produced using heavy metals such as iron or cobalt, which are dangerous pollutants in their own right and thus unsuitable in an environmental context.


bottle waste microplastics

Under direct sunlight, plastic bottles can indirectly produce microplastics. Credit: Alexandra Ribeiro / EyeEm


To get around this, they used carbon nanotubes laced with nitrogen to help boost generation of reactive oxygen species.


The carbon nanotube catalysts removed a significant fraction of microplastics in just eight hours, the researchers say, while remaining stable themselves in the harsh oxidative conditions needed for microplastics breakdown.


The coiled shape increases stability and maximises surface area. As a bonus, by including a small amount of manganese, buried far from the surface of the nanotubes to prevent it from leaching into water, the minute springs became magnetic.


Nanotubes can be collected and reused


“Having magnetic nanotubes is particularly exciting because this makes it easy to collect them from real wastewater streams for repeated use in environmental remediation,” says co-author Xiaoguang Duan, from the University of Adelaide.


As no two microplastics are chemically quite the same, the next step will be to ensure the nanosprings work on microplastics of different compositions, shapes and origins.


The researchers also intend to continue to confirm the non-toxicity of any chemical compounds occurring as intermediates or by-products during microplastics decomposition.


And they hope these byproducts can be harnessed as an energy source for microorganisms that the polluting plastics currently plague.


“If plastic contaminants can be repurposed as food for algae growth, it will be a triumph for using biotechnology to solve environmental problems in ways that are both green and cost efficient,” says Adelaide’s Shaobin Wang, who oversaw the research at the University of Adelaide.


Related


We consume over 74,000 microplastic particles a year


Plastic pollution isn’t just harming fish, it’s also affecting our oxygen


Microplastics found in every turtle tested in international study




About the Author

Nick Carne
Nick Carne is the Editorial Manager for the Royal Institution of Australia.

Published By

Featured Videos

Placeholder
Edible insects - food for the future?
Placeholder
Cookstoves for the developing world
Placeholder
Drones for conservation
Placeholder
From booze to biofuel
Placeholder
Aboriginal Heritage Project
Placeholder
Medicine student saves his brother's life
Placeholder
Naming new mammals with Professor Kris Helgen
Placeholder
Using Drones for Conservation